MAT4111

Premier semestre — 2021–2022

Fiche 5: Corps de décomposition, clôtures algébriques

- **1.** Soient K un corps et $P \in K[X]$ un polynôme irréductible de degré n. Soit L une extension finie de K de degré m premier avec n. Montrer que P est irréductible dans L[X].
- **2.** Soit $P \in K[X]$ un polynôme de degré $n \in \mathbb{N}^*$ et L un corps de décomposition de P. Montrer que [L:K] divise n!.

Indication : procéder par récurrence forte, en distinguant selon que P est irréductible ou non.

- **3.** Soient K un corps et K(T) son corps des fractions rationnelles.
- (a) Montrer que pour tout $n \in \mathbb{N}^*$, le polynôme $X^n T \in K(T)[X]$ est irréductible.
- (b) Montrer que K(T) n'est pas algébriquement clos.
- (c) Soit L une clôture algébrique de K(T). L'extension $L \supseteq K(T)$ peut-elle être finie?
- **4.** (a) Soit $L \supseteq K$ une extension algébrique. Montrer que toute clôture algébrique de L est aussi une clôture algébrique de K.
- (b) Soit $L \supseteq K$ une extension algébrique telle que tout $P \in K[X] \setminus K$ est scindé dans L. Montrer que L est une clôture algébrique de K.
- **★ 5.** (a) Montrer que tout corps algébriquement clos est de cardinalité infinie.
 - (b) Soit K un corps fini. Montrer que l'ensemble des polynômes irréductibles de K[X] est infini.
 - (c) Soit Ω un corps algébriquement clos et K un sous-corps de Ω . Montrer que

 $E = \{x \in \Omega | x \text{ est algébrique sur } K\}$

est une clôture algébrique de K.

- (*d*) Soit *K* un corps de cardinalité au plus dénombrable et *L* une clôture algébrique de *K*. Montrer que *L* est dénombrable.
- (e) Le corps ℚ est-il algébriquement clos?
- (f) Soit $\mathbb{Q}(T)$ une clôture algébrique du corps des fractions rationnelles $\mathbb{Q}(T)$. Montrer que \mathbb{C} contient un sous-corps isomorphe à $\mathbb{Q}(T)$. Montrer que $\mathbb{Q}(T)$ n'est isomorphe ni à \mathbb{Q} , ni à \mathbb{C} .
- **6.** Soient K un corps, Ω un corps algébriquement clos, et $\varphi: K \to \Omega$ un morphisme de corps.
- (a) Soit $L \supseteq K$ une extension finie. Montrer qu'il existe un morphisme de corps $\psi: L \to \Omega$ tel que $\psi|_K = \varphi$.

Indication : commencer par traiter le cas où l'extension est monogène, *i.e.* il existe $\theta \in L$ tel que $L = K(\theta)$.

★ (*b*) Même question dans le cas où l'extension $L \supseteq K$ est algébrique. **Indication :** utiliser l'exercice **4**(*b*) avec le théorème de Steinitz.

- 7. Extensions normales. On considère un corps K, un polynôme $P \in K[X]$ et L un corps de décomposition de P.
- (a) Soit Ω une clôture algébrique de L. Montrer que pour tout K-morphisme de corps $\varphi: L \to \Omega$, on a $\varphi(L) = L$.
- (b) On se propose de montrer la propriété suivante : quelque soit $Q \in K[X]$ irréductible, si Q a une racine dans L, alors Q est scindé dans L. On dit dans ce cas que L est une extension *normale* de K.
 - (i) Soit $Q \in K[X]$ un polynôme irréductible, ayant une racine β dans L. Soit $\gamma \in \Omega$ une autre racine de Q. Montrer que $K(\beta)$ et $K(\gamma)$ sont isomorphes.
 - (ii) Montrer qu'il existe un sous-corps L' de Ω contenant $K(\gamma)$ ainsi qu'un isomorphisme $\psi: L \to L'$ prolongeant l'isomorphisme entre $K(\beta)$ et $K(\gamma)$. **Indication :** utiliser l'exercice précédent.
 - (iii) Montrer que L = L'. Conclure.
- (c) Réciproquement, soit L une extension algébrique finie et normale de K.
 - (i) Justifier qu'il existe $a_1, \ldots, a_m \in L$ tels que $L = K(a_1, \ldots, a_m)$.
 - (ii) Montrer que L est le corps de décomposition du polynôme $\prod_{i=1}^{m} \operatorname{Irr}(a_i, K)$.
- **8.** Soient *p* un nombre premier positif et $P = X^4 + pX p \in \mathbb{Q}[X]$.
- (a) Montrer que P est irréductible sur \mathbb{Q} .
- (b) Montrer que P a exactement deux racines simples dans \mathbb{R} .
- (c) Soit $\alpha \in \mathbb{C}$ une racine de P et $L = \mathbb{Q}(\alpha)$ un corps de rupture de P, de sorte que $[L : \mathbb{Q}] = 4$. On se propose de montrer par l'absurde que L n'a pas de sous-corps non triviaux. On suppose qu'il existe un corps K tel que $L \supsetneq K \supsetneq \mathbb{Q}$. Montrer que dans K[X] on a $P = (X^2 + aX + b)(X^2 + cX + d)$, où $a, b, c, d \in K$.
- (d) Établir que a^2 est racine du polynôme $Q = X^3 + 4pX p^2 \in \mathbb{Q}[X]$.
- (e) Montrer que Q n'a pas de racines dans \mathbb{Q} .
- (*f*) En étudiant les degrés possibles de $Irr(a^2, \mathbb{Q})$, montrer que *Q* admet une racine dans \mathbb{Q} . Conclure.
- (g) On se propose maintenant de déterminer le degré $[E:\mathbb{Q}]$ où $E\subseteq\mathbb{C}$ est le corps de décomposition de P. Soient $\alpha_1\in\mathbb{C}$ et $\alpha_2\in\mathbb{C}$ deux racines différentes de P et $a=-(\alpha_1+\alpha_2)$. En reprenant l'argumentation ci-dessus, montrer que a^2 est racine du polynôme $Q=X^3+4pX-p^2$.
- (h) Montrer que $[\mathbb{Q}(a^2):\mathbb{Q}]=3$ et $[\mathbb{Q}(\alpha_1):\mathbb{Q}]=4$. En déduire que $[E:\mathbb{Q}]=24$.